雅可比矩阵

来自维基百科https://zh.wikipedia.org/wiki/%E9%9B%85%E5%8F%AF%E6%AF%94%E7%9F%A9%E9%98%B5

向量分析中,雅可比矩阵(也称作Jacobi矩陣,英語:Jacobian matrix)是函數的一阶偏导数以一定方式排列成的矩阵

當其為方形矩阵時,其行列式称为雅可比行列式(Jacobi determinant)

要注意的是,如果雅可比矩陣為方陣,那在英文中雅可比矩陣跟Jacobi行列式兩者都稱作 Jacobian

其重要性在於,如果函數  f : ℝn → ℝm 在點 x 可微的話,在點 x 的雅可比矩陣即為該函數在該點的最佳線性逼近,也代表雅可比矩陣是單變數實數函數的微分在向量值多變數函數的推廣,在這種情況下,雅可比矩陣也被稱作函數 f 在點 x 的微分或者導數

代数几何中,代数曲线雅可比行列式’表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。